Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization
نویسندگان
چکیده
In recent years, there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs). Among approaches developed for EAs to deal with DOPs, immigrants schemes have been proven to be beneficial. Immigrants schemes for EAs on DOPs aim at maintaining the diversity of the population throughout the run via introducing new individuals into the current population. In this paper, we carefully examine the mechanism of generating immigrants, which is the most important issue among immigrants schemes for EAs in dynamic environments. We divide existing immigrants schemes into two types, namely thedirect immigrants scheme and the indirect immigrants scheme, according to the way in which immigrants are generated. Then experiments are conducted to understand the difference in the behaviors of different types of immigrants schemes and to compare their performance in dynamic environments. Furthermore, a new immigrants scheme is proposed to combine the merits of two types of immigrants schemes. The experimental results show that the interactions between the two types of schemes X. Yu · K. Tang (B) · T. Chen · X. Yao Nature Inspired Computation and Applications Laboratory, Department of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China e-mail: [email protected] X. Yu e-mail: [email protected] T. Chen e-mail: [email protected] X. Yao CERCIA, The School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK e-mail: [email protected] reveal positive effect in improving the performance of EAs in dynamic environments.
منابع مشابه
Ant Colony Optimization with Immigrants Schemes in Dynamic Environments
In recent years, there has been a growing interest in addressing dynamic optimization problems (DOPs) using evolutionary algorithms (EAs). Several approaches have been developed for EAs to increase the diversity of the population and enhance the performance of the algorithm for DOPs. Among these approaches, immigrants schemes have been found beneficial for EAs for DOPs. In this paper, random, e...
متن کاملGenetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new enviro...
متن کاملAnt algorithms with immigrants schemes for the dynamic vehicle routing problem
Many real-world optimization problems are subject to dynamic environments that require an optimization algorithm to track the optimum during changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to address combinatorial dynamic optimization problems (DOPs), once they are enhanced properly. The integration of ACO algorithms with immigrants schemes showed promising ...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملOptimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods
In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Memetic Computing
دوره 1 شماره
صفحات -
تاریخ انتشار 2009